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We shall present existence results for positive solutions of two multi-point boundary
value problems. The first one is the n-th order nonlinear differential system

(S)

{
u(n)(t) + λb(t)f(v(t)) = 0, t ∈ (0, T )
v(n)(t) + µc(t)g(u(t)) = 0, t ∈ (0, T ), n ≥ 2,

with the m-point boundary conditions

(BC)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi)

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi), m ≥ 3,

where 0 < ξ1 < · · · < ξm−2 < T , ai > 0, i = 1,m− 2.

The second problem is the n-th order nonlinear differential system

(S1)

{
u(n)(t) + b(t)f(v(t)) = 0, t ∈ (0, T )
v(n)(t) + c(t)g(u(t)) = 0, t ∈ (0, T ), n ≥ 2,

with the m-point boundary conditions

(BC1)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi) + b0

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi) + b0, m ≥ 3, b0 > 0.



The multi-point boundary value problems for ordinary differential or difference equa-
tions have applications in a variety of different areas of applied mathematics and
physics. For example the vibrations of a guy wire of a uniform cross-section and com-
posed of N parts of different densities can be set up as a multi-point boundary value
problem (see M. Moshinsky, Bol. Soc. Mat. Mex. (1950)); also many problems in the
theory of elastic stability can be handled as multi-point problems (see S. Timoshenko,
McGraw-Hill, 1961). The study of multi-point boundary value problems for second or-
der differential equations was initiated by V.A. Il’in and E.I. Moiseev (see V.A. Il’in, E.I.
Moiseev, Differ. Equ. 23(7), 23(8) (1987)). Since then such multi-point boundary
value problems (continuous or discrete cases) have been studied by many authors (C.P.
Gupta, S.I. Trofimchuk, R. Ma, Y. Raffoul, D.R. Anderson, R. Avery, A. Boucherif,
W. Cheung, J. Ren, P.W. Eloe, J. Henderson, J.R. Graef, B. Yang, Y. Guo, W. Shan,
W. Ge, S.K. Ntouyas, I.K. Purnaras, C. Yu, Y. Ji, W.T. Li, H.R. Sun, R. Song, H.
Lu, G. Weigao, X. Chunyan, J.R.L. Webb, etc.), by using different methods, such
as fixed point theorems in cones, the Leray-Schauder continuation theorem, nonlinear
alternatives of Leray-Schauder and coincidence degree theory.



(I) PROBLEM (S), (BC)

Introduction

We firstly consider the n-th order nonlinear differential system

(S)

{
u(n)(t) + λb(t)f(v(t)) = 0, t ∈ (0, T )
v(n)(t) + µc(t)g(u(t)) = 0, t ∈ (0, T ), n ≥ 2,

with the m-point boundary conditions

(BC)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi)

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi), m ≥ 3,

where 0 < ξ1 < · · · < ξm−2 < T , ai > 0, i = 1,m− 2.

We shall present sufficient conditions for λ and µ such that positive solutions of
(S), (BC) exist. The existence of positive solutions with respect to a cone for the
system (S) with T = 1 and the three-point boundary conditions u(0) = u′(0) = · · · =
u(n−2)(0) = 0, u(1) = αu(η), v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) = αv(η), where
0 < η < 1, 0 < αηn−1 < 1 has been studied in J. Henderson, S.K. Ntouyas, Electron.
J. Qual. Theory Differ. Equ. (2007).



The existence of positive solutions for (S) with n = 2 and the boundary conditions

βu(0)− γu′(0) = 0, u(T ) =
m−2∑
i=1

aiu(ξi) + b0, βv(0)− γv′(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi) + b0

has been investigated in L., Dyn. Contin. Discrete Impuls. Syst. (2010) for b0 = 0
and L., Math. Bohem. (2010) for b0 > 0 and λ = µ = 1. The corresponding discrete
case, namely the system with second-order differences{

∆2un−1 + λbnf(vn) = 0, n = 1, N − 1
∆2vn−1 + µcng(un) = 0, n = 1, N − 1,

with the m+1-point boundary conditions βu0−γ∆u0 = 0, uN =
m−2∑
i=1

aiuξi, βv0−γ∆v0 =

0, vN =
m−2∑
i=1

aivξi, m ≥ 3 has been studied in L., Libertas Math. (2009). We also

mention the paper Y. Ji, Y. Guo, C. Yu, Appl. Math. Mech. (2009), where the
authors investigated the existence of positive solutions to the n-th order m-point
boundary value problem u(n)(t) + f(t, u, u′) = 0, t ∈ (0,1), u(0) = u′(0) = · · · =

u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi).



We shall present the assumptions that we shall use in the sequel

(H1) 0 < ξ1 < · · · < ξm−2 < T , ai > 0, i = 1,m− 2, d = T n−1 −
m−2∑
i=1

aiξ
n−1
i > 0.

(H2) The functions b, c : [0, T ] → [0,∞) are continuous and each does not vanish
identically on any subinterval of [0, T ].

(H3) The functions f, g : [0,∞)→ [0,∞) are continuous and the limits

f0 = lim
x→0+

f(x)

x
, g0 = lim

x→0+

g(x)

x
, f∞ = lim

x→∞

f(x)

x
, g∞ = lim

x→∞

g(x)

x
exist and are positive numbers.

We shall firstly present some auxiliary results which investigate a boundary value prob-
lem for a n-th order equation (the below problem (1),(2)). Then we shall prove two
existence theorems for the positive solutions with respect to a cone for our problem
(S), (BC). The proofs of these results are based on the Guo-Krasnoselskii fixed point
theorem, presented below.

Theorem 1. Let X be a Banach space and let C ⊂ X be a cone in X. Assume Ω1
and Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let A : C ∩ (Ω2 \Ω1)→ C be
a completely continuous operator such that, either

i) ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or

ii) ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then A has a fixed point in C ∩ (Ω2 \Ω1).



Auxiliary results

We shall present some results from Y. Ji, Y. Guo, C. Yu, Appl. Math. Mech. (2009)
([JGY]) and L. (to appear) ([L]), related to the following n-th order differential equa-
tion

u(n)(t) + y(t) = 0, 0 < t < T (1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =
m−2∑
i=1

aiu(ξi). (2)

Lemma 1. ([JGY], [L]) If d = T n−1 −
m−2∑
i=1

aiξ
n−1
i 6= 0, 0 < ξ1 < · · · < ξm−2 < T and

y ∈ C([0, T ]) then the solution of (1), (2) is given by

u(t) =
tn−1

d(n− 1)!

∫ T

0
(T − s)n−1y(s) ds−

tn−1

d(n− 1)!

m−2∑
i=1

ai

∫ ξi

0
(ξi − s)n−1y(s) ds

−
1

(n− 1)!

∫ t

0
(t− s)n−1y(s) ds, 0 ≤ t ≤ T.



Lemma 2. ([JGY], [L]) If d 6= 0, 0 < ξ1 < · · · < ξm−2 < T then the Green function for
the boundary value problem (1), (2) is given by

G(t, s) =



tn−1

d(n− 1)!

(T − s)n−1 −
m−2∑
i=j+1

ai(ξi − s)n−1

− 1

(n− 1)!
(t− s)n−1,

if ξj ≤ s < ξj+1, s ≤ t,

tn−1

d(n− 1)!

(T − s)n−1 −
m−2∑
i=j+1

ai(ξi − s)n−1

 ,
if ξj ≤ s < ξj+1, s ≥ t, j = 0,m− 3,

tn−1

d(n− 1)!
(T − s)n−1 −

1

(n− 1)!
(t− s)n−1, if ξm−2 ≤ s ≤ T, s ≤ t,

tn−1

d(n− 1)!
(T − s)n−1, if ξm−2 ≤ s ≤ T, s ≥ t, (ξ0 = 0).

Using the above Green function the solution of problem (1), (2) is expressed as

u(t) =

∫ T

0
G(t, s)y(s) ds.

Lemma 3. ([JGY], [L]) If ai > 0 for all i = 1,m− 2, 0 < ξ1 < · · · < ξm−2 < T , d > 0 and
y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the unique solution u of problem (1), (2)
satisfies u(t) ≥ 0 for all t ∈ [0, T ].



Lemma 4. ([L]) If ai > 0 for all i = 1,m− 2, 0 < ξ1 < · · · < ξm−2 < T , d > 0,
y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem (1), (2) satisfies

u(t) ≤
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1y(s) ds, ∀t ∈ [0, T ],

u(ξj) ≥
ξn−1
j

d(n− 1)!

∫ T

ξm−2

(T − s)n−1y(s) ds, ∀ j = 1,m− 2.

Lemma 5. ([JGY]) We assume that 0 < ξ1 < · · · < ξm−2 < T , ai > 0 for all i = 1,m− 2,
d > 0 and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ]. Then the solution of problem (1), (2)
verifies inf

t∈[ξm−2,T ]
u(t) ≥ γ‖u‖, where

γ =


min

{
am−2(T − ξm−2)

T − am−2ξm−2
,
am−2ξ

n−1
m−2

T n−1

}
, if

m−2∑
i=1

ai < 1,

min

{
a1ξ

n−1
1

T n−1
,
ξn−1
m−2

T n−1

}
, if

m−2∑
i=1

ai ≥ 1

and ‖u‖ = sup
t∈[0,T ]

|u(t)|.



Existence of positive solutions of (S), (BC)

Using the Green function given in Lemma 2, a pair (u(t), v(t)), t ∈ [0, T ] is a solution
of eigenvalue problem (S), (BC) if and only if

u(t) = λ

∫ T

0
G(t, s)b(s)f

(
µ

∫ T

0
G(s, τ)c(τ)g(u(τ)) dτ

)
ds, 0 ≤ t ≤ T,

v(t) = µ

∫ T

0
G(t, s)c(s)g(u(s)) ds, 0 ≤ t ≤ T.

We consider the Banach space X = C([0, T ]) with supremum norm ‖ · ‖ and define the
cone C ⊂ X by

C = {u ∈ X, u(t) ≥ 0, ∀ t ∈ [0, T ] and inf
t∈[ξm−2,T ]

u(t) ≥ γ‖u‖},

where γ is defined in Lemma 5.

For our first result we define the positive numbers L1 and L2 by

L1 = max


(

γ2ξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1b(s)f∞ ds

)−1

,

(
γ2ξn−1

m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s)g∞ ds

)−1
 ,

L2 = min

{(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1b(s)f0 ds

)−1

,

(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)g0 ds

)−1
}
.



Theorem 2. Assume the assumptions (H1)–(H3) hold and L1 < L2. Then for each λ
and µ that satisfy λ, µ ∈ (L1, L2) there exist a positive solution with respect to a cone,
(u(t), v(t)), t ∈ [0, T ], of problem (S), (BC).

Sketch of proof. Let λ, µ ∈ (L1, L2) and we choose a positive number ε such that
ε < f∞, ε < g∞,

max


(

γ2ξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1b(s)(f∞ − ε) ds

)−1

,

(
γ2ξn−1

m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s)(g∞ − ε) ds

)−1
 ≤ min(λ, µ)

and

max(λ, µ) ≤ min

{(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1b(s)(f0 + ε) ds

)−1

,

(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)(g0 + ε) ds

)−1
}

.

We now define the operator A : C → X, by



A(u)(t) = λ

∫ T

0
G(t, s)b(s)f

(
µ

∫ T

0
G(s, τ)c(τ)g(u(τ)) dτ

)
ds, 0 ≤ t ≤ T, u ∈ C.

By Lemma 5, we have A(C) ⊂ C. By using the Arzela-Ascoli theorem we deduce that
the operator A is completely continuous (compact and continuous). By definitions of
f0 and g0 there exists K1 > 0 such that

f(x) ≤ (f0 + ε)x and g(x) ≤ (g0 + ε)x, 0 < x ≤ K1.

Using (H3) we have f(0) = g(0) = 0 and the above inequalities are also valid for x = 0.

Let u ∈ C with ‖u‖ = K1. Because v(t) = µ

∫ T

0
G(t, s)c(s)g(u(s)) ds, t ∈ [0, T ] verifies

the problem (1), (2) with y(t) = µc(t)g(u(t)), t ∈ [0, T ], then by Lemma 4 and the
above property of g we deduce, after some computations, that v(t) ≤ ‖u‖ = K1, for
t ∈ [0, T ].

By using once again Lemma 4 and the properties of function f we have A(u)(t) ≤
K1 = ‖u‖, for all t ∈ [0, T ].

Then ‖A(u)‖ ≤ ‖u‖, for all u ∈ C with ‖u‖ = K1. If we denote by Ω1 = {u ∈ C, ‖u‖ <
K1}, then we obtain ‖A(u)‖ ≤ ‖u‖ for all u ∈ C ∩ ∂Ω1.

Next, by definitions of f∞ and g∞, there exists K̄2 > 0 such that

f(x) ≥ (f∞ − ε)x and g(x) ≥ (g∞ − ε)x, x ≥ K̄2.



We consider now K2 = max
{

2K1, K̄2/γ
}

. For u ∈ C with ‖u‖ = K2, we obtain by using
Lemma 5, that u(t) ≥ γK2 ≥ K̄2, for all t ∈ [ξm−2, T ].

Then, by using Lemma 4, Lemma 5 and the above relations, we obtain that for
t ≥ ξm−2, v(t) ≥ ‖u‖ = K2 and A(u)(ξm−2) ≥ K2 = ‖u‖.

Therefore ‖A(u)‖ ≥ A(u)(ξm−2) ≥ ‖u‖, for all u ∈ C with ‖u‖ = K2. We denote by
Ω2 = {u ∈ C, ‖u‖ < K2}. Then ‖A(u)‖ ≥ ‖u‖, for all u ∈ C ∩ ∂Ω2.

We now apply Theorem 1 i) and we deduce that A has a fixed point u ∈ C ∩ (Ω̄2 \Ω1).

This element together with v(t) = µ

∫ T

0
G(t, s)c(s)g(u(s)) ds, t ∈ [0, T ] represent a

positive solution of (S), (BC) with respect to cone C, for the given λ and µ. Q.E.D.

Remark 1. The condition L1 < L2 from Theorem 2 is equivalent to

max

{∫ T

0
(T − s)n−1b(s)f0 ds,

∫ T

0
(T − s)n−1c(s)g0 ds

}
min

{∫ T

ξm−2

(T − s)n−1b(s)f∞ ds,

∫ T

ξm−2

(T − s)n−1c(s)g∞ ds

} <
γ2ξn−1

m−2

T n−1
.

For the next existence result we define the positive numbers

L3 = max


(

γξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1b(s)f0 ds

)−1

,

(
γξn−1

m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s)g0 ds

)−1
,



L4 = min

{(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1b(s)f∞ ds

)−1

,

(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)g∞ ds

)−1
}

.

Theorem 3. Assume the assumptions (H1)–(H3) hold and L3 < L4. Then for each
λ and µ that satisfy λ, µ ∈ (L3, L4), there exists a positive solution with respect to a
cone, (u(t), v(t)), t ∈ [0, T ], of (S), (BC).

Sketch of proof. Let λ and µ with λ, µ ∈ (L3, L4). We select a positive number ε
such that ε < f0, ε < g0 and

max


(

γξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1b(s)(f0 − ε) ds

)−1

,

(
γξn−1

m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s)(g0 − ε) ds

)−1
 ≤ min(λ, µ)

and

max(λ, µ) ≤ min

{(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1b(s)(f∞ + ε) ds

)−1

,

(
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)(g∞ + ε) ds

)−1
}

.



We also consider the operator A defined in the proof of Theorem 2. From the defini-
tions of f0 and g0, we deduce that there exists K̄3 > 0 such that

f(x) ≥ (f0 − ε)x and g(x) ≥ (g0 − ε)x, 0 < x ≤ K̄3.

Using the properties of f and g the above inequalities are also valid for x = 0.

In addition, because g is a continuous function with g0 > 0, then g(0) = 0 and there
exists K3 ∈ (0, K̄3) such that

g(x) ≤
K̄3

µT n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s) ds

, 0 < x ≤ K3.

For u ∈ C with ‖u‖ = K3, by Lemma 4 and the above inequality, we deduce that
v(t) ≤ K̄3, for all t ∈ [0, T ].

By using Lemma 4, Lemma 5 and the properties of f, g, we then obtain A(u)(ξm−2) ≥
‖u‖.

Hence ‖A(u)‖ ≥ A(u)(ξm−2) ≥ ‖u‖, for u ∈ C with ‖u‖ = K3. We denote by Ω3 = {u ∈
C, ‖u‖ < K3}, and then we have ‖A(u)‖ ≥ ‖u‖ for all u ∈ C ∩ ∂Ω3.



We now consider the functions f∗, g∗ : [0,∞) → [0,∞) defined by f∗(x) = sup
0≤y≤x

f(y),

g∗(x) = sup
0≤y≤x

g(y). By (H2) we obtain for f∗ and g∗ the relations lim
x→∞

f∗(x)

x
= f∞,

lim
x→∞

g∗(x)

x
= g∞.

We also have f(x) ≤ f∗(x), g(x) ≤ g∗(x), for all x ≥ 0. Then there exists K̄4 > 0 such
that

f∗(x) ≤ (f∞ + ε)x, g∗(x) ≤ (g∞ + ε)x, for all x ≥ K̄4.

Let K4 > max{2K3, K̄4}. Then for u with ‖u‖ = K4 we obtain A(u)(t) ≤ K4 = ‖u‖.

So ‖A(u)‖ ≤ ‖u‖, for all u ∈ C with ‖u‖ = K4. If we denote by Ω4 = {u ∈ C, ‖u‖ < K4},
then we obtain ‖A(u)‖ ≤ ‖u‖, for all u ∈ C ∩ ∂Ω4.

By Theorem 1 ii) we deduce that A has a fixed point u ∈ C ∩(Ω̄4 \Ω3), which together

with v(t) = µ

∫ T

0
G(t, s)c(s)g(u(s)) ds, t ∈ [0, T ] give us a positive solution of (S), (BC)

with respect to cone C, for the chosen values λ and µ. Q.E.D.

Remark 2. The condition L3 < L4 is equivalent to



max

{∫ T

0
(T − s)n−1b(s)f∞ ds,

∫ T

0
(T − s)n−1c(s)g∞ ds

}
min

{∫ T

ξm−2

(T − s)n−1b(s)f0 ds,

∫ T

ξm−2

(T − s)n−1c(s)g0 ds

} <
γξn−1

m−2

T n−1
.

Example 1

As in Example 4.1 in J. Henderson, S.K. Ntouyas, I.K. Purnaras, Neural, Parallel,
Scient. Comp. (2008), let us consider the functions{

f(x) = p2| sinx|+ p1xe−1/x, x ∈ [0,∞),
g(x) = q2| sinx|+ q1xe−1/x, x ∈ [0,∞),

with p1, p2, q1, q2 > 0.

We have lim
x→0+

f(x)

x
= p2, lim

x→∞

f(x)

x
= p1, lim

x→0+

g(x)

x
= q2, lim

x→∞

g(x)

x
= q1.

Let T = 1, n = 3, m = 4, b(t) = b0t, c(t) = c0t, t ∈ [0,1], with b0, c0 > 0 and
ξ1 = 1

3
, ξ2 = 2

3
, a1 = 1, a2 = 1

2
.

We consider the third-order differential system

(S0)

{
u′′′(t) + λb0t

[
p2| sin v(t)|+ p1v(t)e−1/v(t)

]
= 0, t ∈ (0,1)

v′′′(t) + µc0t
[
q2| sinu(t)|+ q1|u(t)|e−1/u(t)

]
= 0, t ∈ (0,1),



with the boundary conditions

(BC0)

{
u(0) = u′(0) = 0, u(1) = u(1

3
) + 1

2
u(2

3
)

v(0) = v′(0) = 0, v(1) = v(1
3
) + 1

2
v(2

3
).

We also have d = 1−
2∑
i=1

aiξ
2
i =

2

3
> 0,

2∑
i=1

ai =
3

2
> 1 and γ = min{a1ξ2

1, ξ
2
2} = 1

9
. The

condition L1 < L2 or the equivalent form given in Remark 3 is
max{b0p2, c0q2}
min{b0p1, c0q1}

<
4

6561
.

Therefore if the above condition is verified, then by Theorem 2 we deduce that for all
numbers λ, µ ∈ (L1, L2) the problem (S0), (BC0) has positive solutions.



(II) PROBLEM (S1), (BC1)

Introduction

We consider the nonlinear n-th order differential system

(S1)

{
u(n)(t) + b(t)f(v(t)) = 0, t ∈ (0, T )
v(n)(t) + c(t)g(u(t)) = 0, t ∈ (0, T ), n ≥ 2,

with the m-point boundary conditions

(BC1)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi) + b0

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi) + b0, m ≥ 3, b0 > 0.

We shall investigate the existence and nonexistence of positive solutions of (S1), (BC1).

We shall suppose that the following conditions are verified

(A1) 0 < ξ1 < ξ2 < · · · < ξm−2 < T , ai > 0 for i = 1,m− 2, d = T n−1 −
m−2∑
i=1

aiξ
n−1
i > 0,

b0 > 0.



(A2) The functions b, c : [0, T ]→ [0,∞) are continuous and there exist t0, t̃0 ∈ [ξm−2, T )
such that b(t0) > 0, c(t̃0) > 0.

(A3) The functions f, g : [0,∞)→ [0,∞) are continuous and satisfy the conditions

a) There exists c0 > 0 such that f(u) <
c0

L
, g(u) <

c0

L
, for all u ∈ [0, c0].

b) lim
u→∞

f(u)

u
=∞, lim

u→∞

g(u)

u
=∞,

where L = max

{
T n−1

d(n− 1)!

∫ T

0
(T − s)n−1b(s) ds,

T n−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s) ds

}
.

Main results

First we shall present an existence result for the positive solutions of (S1), (BC1).

Theorem 4. Assume that the assumptions (A1), (A2), (A3)a hold. Then the problem
(S1), (BC1) has at least one positive solution for b0 > 0 sufficiently small.

Sketch of proof. We consider the problem
h(n)(t) = 0, t ∈ (0, T )

h(0) = h′(0) = · · · = h(n−2)(0) = 0, h(T ) =
n−2∑
i=1

aih(ξi) + 1.
(3)



The solution h(t), t ∈ (0, T ) of problem (3) is h(t) =
tn−1

d
, t ∈ [0, T ].

We define the functions x(t), y(t), t ∈ [0, T ] by

x(t) = u(t)− b0h(t), y(t) = v(t)− b0h(t), t ∈ [0, T ].

Then (S1), (BC1) can be equivalently written as{
x(n)(t) + b(t)f(y(t) + b0h(t)) = 0
y(n)(t) + c(t)g(x(t) + b0h(t)) = 0, t ∈ (0, T )

(4)

with the boundary conditions
x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(T ) =

m−2∑
i=1

aix(ξi)

y(0) = y′(0) = · · · = y(n−2)(0) = 0, y(T ) =
m−2∑
i=1

aiy(ξi).

(5)

Using the Green function given in Lemma 2, a pair (x(t), y(t)) is a solution of problem
(4), (5) if and only if

x(t) =

∫ T

0
G(t, s)b(s)f

(∫ T

0
G(s, τ)c(τ)g(x(τ) + b0h(τ)) dτ + b0h(s)

)
ds,

y(t) =

∫ T

0
G(t, s)c(s)g(x(s) + b0h(s)) ds, 0 ≤ t ≤ T,

(6)



where h(t), t ∈ [0, T ] is the solution of (3).

We consider the Banach space X = C([0, T ]) with supremum norm ‖ · ‖ and we define
the set

K = {x ∈ C([0, T ]), 0 ≤ x(t) ≤ c0, ∀ t ∈ [0, T ]} ⊂ X.

We also define the operator B : K → X by

B(x)(t) =

∫ T

0
G(t, s)b(s)f

(∫ T

0
G(s, τ)c(τ)g(x(τ) + b0h(τ))dτ + b0h(s)

)
ds,

0 ≤ t ≤ T.

For sufficiently small b0 > 0, by (A3)a we deduce

f(y(t) + b0h(t)) ≤
c0

L
, g(x(t) + b0h(t)) ≤

c0

L
, ∀x, y ∈ K, ∀ t ∈ [0, T ].

Then for any x ∈ K we have, by using Lemma 3, that B(x)(t) ≥ 0, ∀ t ∈ [0, T ]. By
Lemma 4 we also have y(s) ≤ c0, ∀ s ∈ [0, T ] and B(x)(t) ≤ c0, ∀ t ∈ [0, T ]. Therefore
B(K) ⊂ K.

Using standard arguments we deduce that B is completely continuous (continuous and
compact). By the Schauder fixed point theorem, we conclude that B has a fixed point
x ∈ K. This element together with y given by (6) represent a solution for (4) and (5).
This shows that our problem (S1), (BC1) has a positive solution u = x+b0h, v = y+b0h
for sufficiently small b0. Q.E.D.



In what follows we shall present sufficient conditions for nonexistence of positive solu-
tions of (S1), (BC1).

Theorem 5. Assume that the assumptions (A1),(A2), (A3)b hold. Then the problem
(S1), (BC1) has no positive solution for b0 sufficiently large.

Sketch of proof. We suppose that (u, v) is a positive solution of (S1), (BC1) .
Then x = u − b0h, y = v − b0h is solution for (4), (5), where h is the solution of
problem (3). By Lemma 3 we have x(t) ≥ 0, y(t) ≥ 0, ∀ t ∈ [0, T ], and by (A2) we
deduce that ‖x‖ > 0, ‖y‖ > 0. Using Lemma 5 we also have inf

t∈[ξm−2,T ]
x(t) ≥ γ‖x‖ and

inf
t∈[ξm−2,T ]

y(t) ≥ γ‖y‖.

Using now the expression for h, we deduce that inf
t∈[ξm−2,T ]

h(t) ≥ γ‖h‖.

Then inf
t∈[ξm−2,T ]

(x(t) + b0h(t)) ≥ γ‖x+ b0h‖ and inf
t∈[ξm−2,T ]

(y(t) + b0h(t)) ≥ γ‖y + b0h‖.

We now consider

R =
d(n− 1)!

γξn−1
m−2

(
min

{∫ T

ξm−2

(T − s)n−1c(s) ds,

∫ T

ξm−2

(T − s)n−1b(s) ds

})−1

> 0.

By (A3)b, for R defined above we deduce that there exists M > 0 such that f(u) > 2Ru,
g(u) > 2Ru, for all u ≥M .



We consider b0 > 0 sufficiently large such that

inf
t∈[ξm−2,T ]

(x(t) + b0h(t)) ≥M and inf
t∈[ξm−2,T ]

(y(t) + b0h(t)) ≥M.

By using Lemma 4 and the above considerations, we have y(ξm−2) ≥ 2‖x+b0h‖ ≥ 2‖x‖.

And then we obtain

‖x‖ ≤
1

2
y(ξm−2) ≤

1

2
‖y‖. (7)

In a similar manner we deduce x(ξm−2) ≥ 2‖y + b0h‖ ≥ 2‖y‖ and so

‖y‖ ≤
1

2
x(ξm−2) ≤

1

2
‖x‖. (8)

By (7) and (8) we obtain ‖x‖ ≤
1

2
‖y‖ ≤

1

4
‖x‖, which is a contradiction, because ‖x‖ > 0.

Then, when b0 is sufficiently large, our problem (S1), (BC1) has no positive solution.
Q.E.D.



Example 2

We consider T = 1, b(t) = bt, c(t) = ct, t ∈ [0,1], b, c > 0, n = 3, m = 5, ξ1 = 1
3
, ξ2 =

2
3
, a1 = 1, a2 = 1

2
. Then d = 1−

2∑
i=1

aiξ
2
i =

2

3
> 0.

We also consider the functions f, g : [0,∞)→ [0,∞), f(x) =
ãx3

x+ 1
, g(x) =

b̃x3

x+ 1
with

ã, b̃ > 0. We have lim
x→∞

f(x)

x
= lim

x→∞

g(x)

x
= ∞. The constant L from (A3) is in this

case

L = max

{
1

2d

∫ 1

0
(1− s)2bs ds,

1

2d

∫ 1

0
(1− s)2cs ds

}
=

1

16
max{b, c}.

We choose c0 = 1 and if we select ã and b̃ satisfying the conditions

ã <
2

L
=

32

max{b, c}
= 32 min

{
1

b
,
1

c

}
, b̃ <

2

L
= 32 min

{
1

b
,
1

c

}
,

then we obtain f(x) ≤ ã
2
< 1

L
, g(x) ≤ b̃

2
< 1

L
, for all x ∈ [0,1].

Thus all the assumptions (A1)− (A3) are verified. By Theorem 4 and Theorem 5 we



deduce that the nonlinear third-order differential system
u′′′(t) + bt

ãv3(t)

v(t) + 1
= 0

v′′′(t) + ct
b̃u3(t)

u(t) + 1
= 0, t ∈ (0,1)

with the boundary conditions{
u(0) = u′(0) = 0, u(1) = u(1

3
) + 1

2
u(2

3
) + b0

v(0) = v′(0) = 0, v(1) = v(1
3
) + 1

2
v(2

3
) + b0,

has at least one positive solution for sufficiently small b0 > 0 and no positive solution
for sufficiently large b0.
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